Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124803, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182627

RESUMO

Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.


Assuntos
Nanopartículas Metálicas , Polímeros , Carboidratos , Solventes , Embalagem de Alimentos
2.
J Environ Manage ; 320: 115926, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940007

RESUMO

The color and Chemical Oxygen Demand (COD) reduction in distillery industrial effluent (DIW) was investigated utilizing photo (UV), sono (US), electrocoagulation (EC), UV + US, UV + EC, US + EC, and US + UV + EC technologies. The empirical study demonstrated that the UV + US + EC process removed almost 100% of color and 95.63% of COD from DIW while consuming around 6.97 kWh m-3 of electrical energy at the current density of 0.175 A dm-2, COD of 3600 mg L-1, UV power of 32 W, US power of 100 W, electrode pairings of Fe/Fe, inter-electrode distance of 0.75 cm, pH of 7, and reaction time of 4 h, respectively. The values found were much greater than those produced using UV, US, EC, UV + US, UV + EC, and US + EC methods. The influence of various control variables such as treatment time (1-5 h), current density (0.075-2.0 A dm-2), COD (1800-6000 mg L-1), inter-electrode distance (0.75-3.0 cm), electrode pairings (Fe/Fe, Fe/Al, Al/Fe, Al/Al), UV (8-32 W), and US (20-100 W) on the color and COD reduction were investigated to determine the optimum operating conditions. It was observed that, an increase in treatment time, current density, UV and US power, decrease in the COD, and inter-electrode distance with Fe/Fe electrode combination improved the COD removal efficiency. The UV and US + EC processes' synergy index was investigated and reported. The results showed that, the US + UV + EC treatment combination was effective in treating industrial effluent and wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eletrocoagulação/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos
3.
Chemosphere ; 307(Pt 3): 136017, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35977566

RESUMO

The need of the hour relies on finding new but sustainable ways to curb rising pollution levels. The accelerated levels of urbanization and increase in population deplete the finite resources essential for human sustenance. In this aspect, water is one of the non-renewable sources that is running out very fast and is polluted drastically day by day. One way of tackling the problem is to reduce the pollution levels by decreasing the usage of chemicals in the process, and the other is to find ways to reuse or reduce the contaminants in the effluent by treatment methods. Most of the available water recycling or treatment methods are not sustainable. Some of them even use toxic chemicals in the processing steps. Treatment of organic wastes from industries is a challenging task as they are hard to remove. Electrocoagulation is one of the emerging water treatment technologies that is highly sustainable and has a comparatively cheaper operating cost. Being a broad-spectrum treatment process, it is suitable for treating the most common water pollutants ranging from oils, bacteria, heavy metals, and others. The process is also straightforward, where electrical current is used to coagulate the contaminates. The presence of carcinogens in these waste water increases the need for its treatment towards further use. The present investigation is made as an extensive analysis of the emerging carcinogens and their various sources from process industries, especially in the form of organic waste and their removal by electrocoagulation and its coupled techniques. The paper also aims to ascertain why the electrocoagulation technique may be a better alternative compared with other methods for the removal of carcinogens in organic wastewater, an analysis which has not been explored before.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Poluentes da Água , Carcinógenos/análise , Eletrocoagulação/métodos , Humanos , Resíduos Industriais/análise , Metais Pesados/análise , Óleos , Estudos Prospectivos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes da Água/análise , Poluentes Químicos da Água/análise
4.
Heliyon ; 8(5): e09383, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592662

RESUMO

Electrocoagulation (EC) is a process used by supply of electric current with sacrificial electrodes for the removal of pollutant from wastewater. The study was experimentally investigated taking into account various factors such as pH (3-7.5), current (0.03-0.09 A), distance between the electrodes (1-2 cm), electrolytic concentration (1-3 g/L), and electrolysis time (20-60 min) which is impact on the % removal efficiency of color, chemical oxygen demand (COD), turbidity and determination of energy consumption used for aluminum (Al) electrode used. The surface response design process based on the central composite design (CCD) has been used to optimize different operational parameters for treatment of hospital wastewater using EC process. The % color, COD and turbidity removal, and energy consumption under different conditions were predicted with the aid of a quadratic model, as were the significance and their interaction with independent variables assessed by analysis of variance (ANOVA). The optimal conditions were obtained through mathematical and statistical methods to reach maximum % color, COD, and turbidity removal with minimum energy consumption. The results showed that the maximum removal of color (92.30%), COD (95.28%), and turbidity (83.33%) were achieved at pH-7.5, current-0.09A, electrolytic concentration-3g/L, distance between electrodes-2 cm and reaction time 60 min. This means that, the process of EC can remove pollutants from various types of wastewaters and industrial effluent under the various operating parameters.

5.
Ultrason Sonochem ; 34: 504-518, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773275

RESUMO

This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...